
 1

ADVANCED ALGORITHM FOR OPTIMAL SENSOR-TARGET AND
 WEAPON-TARGET PAIRINGS IN DYNAMIC COLLABORATIVE ENGAGEMENT

Z. R. Bogdanowicz*, N. P. Coleman
Armament Research, Development and Engineering Center (ARDEC)

Picatinny Arsenal, New Jersey 07806

ABSTRACT

In this paper we introduce a new algorithm for

assigning sensors and weapons to targets in the dynamic
environment, where sensors, weapons, and targets are
allowed to move freely (but predictably) over a certain
region of a battlefield. In addition, we determine when
such an assignment should be executed. This new
algorithm for Sensors/Weapons And Targets pairings is
named SWAT. In SWAT the optimization component
Swt_opt is derived from the well-known auction
algorithm and produces an optimal solution.

1. INTRODUCTION

Sensor-target and weapon-target (or briefly
sensor/weapon-target) pairings in general are difficult
optimization problems. These problems, however, are
critical to the outcome of modern battles in net-centric
warfare, which profoundly depends on the intelligent
usage of all available sensors and weapons maximizing
their effectiveness. The main difficulty of assigning
sensors and weapons to a set of identified targets stems
from the potential dependence of weapons on sensors
(Bogdanowicz and Coleman, 2007). At the same time,
smart weapons (i.e., weapons that depend on the
information obtained from sensors) are expected to play
an increasingly more dominant role in the net-centric
warfare of the future.

In the dynamic environment, where sensors,

weapons, and targets are mobile, this problem becomes
even more difficult due to uncertainties involved in
predicting where all entities will reside at a particular
instance of time in the future. It also raises a problem of
scheduling the engagement of the targets. However, the
sensor/weapon-target pairing problem can be simplified to
the well-known assignment optimization problem in
mathematics (Bertsekas, 1990, 1992a, 1992b; Castanon,
1993; Galil, 1986; Hopcroft and Karp,1973; Micali and
Vazirani, 1980). We have shown that for practical
sensor/weapon-target pairings in a static environment
(i.e., without mobile sensors, weapons or targets), an
algorithm based on the well-known auction algorithm
should be considered a preferred choice (Bogdanowicz
and Coleman, 2007).

In this paper we introduce a new algorithm for
assigning sensors/weapons to targets in the dynamic
environment, where sensors, weapons, and targets are
allowed to move freely (but predictably) over a certain
region of a battlefield. This new algorithm for
Sensors/Weapons And Targets pairings is named SWAT
and its exact optimization component Swt_opt is derived
from the auction algorithm (Bertsekas, 1990 1992a,
1992b; Bogdanowicz et al., 2004a, 2004b, 2005, 2007;
Castanon, 1993).

 SWAT consists of three main components, which are

described in Sections 4 through 6. The main focus in this
work is on optimization component Swt_opt that we
describe in Section 6.

2. ASSUMPTIONS

We assume that all the sensors S, weapons W, and
targets R are given along with their respective parameters
and initial locations. The planning time horizon into the
future T is also given. So, T represents the time interval in
which the engagement of sensors/weapons with targets
should take place. Based on the movement characteristics
of the units (i.e., sensors, weapons, and targets), we
assume that the preprocessor called Predictor accurately
predicts the location of these units at time t, T ≥ t > 0.
Furthermore, for a given sensor-weapon-target triplet
(i,j,k) we assume that the preprocessor called Evaluator
establishes the precise benefit bi,j,k of assigning a given
sensor-weapon pair (i,j) to target k., which represents a
rational number. Based on this combined input, SWAT
determines an optimal assignment of sensors/weapons to
targets (i.e., an assignment that maximizes the total
benefit ∑

i,j,k
bi,j,k) along with the proposed engagement

time t, where T ≥ t > 0. To do this, SWAT utilizes the
optimizer called Swt_opt defined in Section 6.3.

To perform the optimization we assume that time

progresses in discrete and equal steps, where δ denotes
the time interval corresponding to a step under
consideration. If a sensor/weapon can be simultaneously
assigned into many targets, or a target can be
simultaneously targeted by many sensors/weapons, then
the transformation based on the following four rules
applies.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Advanced Algorithm For Optimal Sensor-Target And Weapon-Target
Pairings In Dynamic Collaborative Engagement

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Armament Research, Development and Engineering Center (ARDEC)
Picatinny Arsenal, New Jersey 07806

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4
December 2008, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

 Rule 1: If sensor i can be assigned to m targets then
such a sensor can be decomposed into m pseudo-sensors
si,1, si,2, …, si,m such that each pseudo-sensor si,j, m ≥ j ≥ 1,
can be assigned to at most one target. In addition, if the
benefit of assigning sensor/weapon (i,j) into target k
equals bi,j,k then the benefit of assigning a corresponding
pseudo-sensor remains bi,j,k.

 Rule 2: If weapon i can be assigned to m targets then
such a weapon can be decomposed into m pseudo-
weapons wi,1, wi,2, …, wi,m such that each pseudo-weapon
wi,j, m ≥ j ≥ 1, can be assigned to at most one target. In
addition, if the benefit of assigning sensor/weapon (i,j)
into target k equals bi,j,k then the benefit of assigning a
corresponding pseudo-weapon remains bi,j,k.

 Rule 3: If target i can be assigned by up to to m sensors
then such a target can be decomposed into m pseudo-
targets ri,1, ri,2, …, ri,m such that each pseudo-target ri,j, m
≥ j ≥ 1, can be assigned by at most one sensor. In
addition, if the benefit of assigning sensor/weapon (i,j)
into target k equals bi,j,k then the benefit of assigning a
corresponding pseudo-target remains bi,j,k.

 Rule 4: If target i can be targeted by up to to m
weapons then such a target can be decomposed into m
pseudo-targets ri,1, ri,2, …, ri,m such that each pseudo-target
ri,j, m ≥ j ≥ 1, can be targeted by at most one weapon. In
addition, if the benefit of assigning sensor/weapon (i,j)
into target k equals bi,j,k then the benefit of assigning a
corresponding pseudo-target remains bi,j,k.

Furthermore, if the number of sensors is different
from the number of weapons (or targets) then it can be
translated to a symmetric input (for SWAT and for
Swt-opt) in a straightforward way by augmenting it with
pseudo-sensors or pseudo-weapons (or pseudo-targets)
with benefit values set to zero. So, without loss of
generality we can assume that SWAT and its optimizer
Swt_opt are supplied with a symmetric input, where every
sensor/weapon can be assigned exactly once to a target
and vice versa. Let n be the number of sensors, which
equals the number of weapons, and which equals the
number of targets. Let bmax be the maximum benefit of
assigning a sensor/weapon pair to a target. Because every
benefit bi,j,k is a rational number then there exists an
integer that converts bi,j,k to integer b’i,j,k through
multiplication. Let C be the smallest such integer, i.e.,
b’i,j,k = bi,j,kC, where b’i,j,k is integer.

3. SOFTWARE ARCHITECTURE

An architecture that supports SWAT consists of the

following key active components:

(a) Translator1,

(b) Predictor,
(c) Evaluator,
(d) Optimizer (Swt_opt Algorithm),
(e) Translator2,

where Translator1 represents preprocessor, while
Translator2 represents postprocessors of the assignment
optimization problem realized by Predictor, Evaluator,
and Optimizer.

In particular, Translator1 takes available weapons and
sensors, and given targets, and based on its internal
Knowledge Base (KB) it generates intermediate results
that describe the status of weapons/sensors/targets at the
initial instance of time. Translator2 takes the outcome of
optimization produced by Optimizer and reports the
optimal weapon/sensor-target assignment along with the
proposed time t when such assignment should be
executed, where tmax ≥ t ≥ tmin. More detailed functionality
of these components is described in Sections 4-6, and an
architecture based on them is shown in Fig. 1.

Fig. 1 – Architecture for
the dynamic sensor/weapon-target pairing

Scheduled
 Assignment

Intermediate
Results

Translator1 Translator2

Predictor Optimizer

Sensors,
Weapons,Targets

Knowledge Base

Evaluator

 3

4. LOCATIONS PREDICTION IN SWAT

One of the first steps in our SWAT algorithm relies on
predicting the locations of weapons, sensors, and targets
at a future time. Let t0 be an initial time under
consideration for weapons/sensors/targets, and let T be a
planning time horizon for them into the future. Let t0, t1,
…, tr be the time instances such that the following
relations are satisfied.

t1-t0 =tmin , (1)

tr =T , (2)

ti+1-ti =δ , (3)

 tmin > δ, (4)
for r > i ≥ 1.

For given i, r > i ≥ 1, Predictor in SWAT determines
the locations of sensors and weapons at time ti -β, where β
≥ 0 and t1 > β, (Fig. 1). In addition, Predictor determines
the locations of targets at time ti. For given i let L(S,W,R)
be the predicted list of locations of sensors/weapons at
time ti - β, and targets at time ti. So, we can say that
Predictor generates L(S,W,R), which we denote by
Predictor(S,W,R,KB,ti) → L(S,W,R). That is, Predictor
generates L(S,W,R) based on the given sensors S, weapons
W, targets R, knowledge base KB, and a time instance ti
(example in Fig. 2).

Fig. 2 - An example of establishing L(S,W,R) and

corresponding preferred benefits

5. BENEFIT EVALUATION IN SWAT

Let r ≥ k ≥ 1. The benefits of assigning weapons and
sensors to targets will be affected by the locations of
weapons/sensors at time tk - β, and targets at time tk, and
they will change for different values of tk. For example,
consider three sensors, three weapons, and three targets
from Fig. 2. We consider here a scenario in two
dimensions (x,y) only, where sensors s1, s2, s3 are assumed
stationary, and weapons/targets w1, w2, w3, r1, r2, r3 are
moving only in x direction. Fig. 2a represents an initial
(at time t0) set of locations for S,W,R. Fig. 2c illustrates
Predictor’s set of locations of S,W,R at time ti > t0, and
Fig. 2b illustrates Predictor’s set of corresponding
locations of S,W,R at time ti-β. Based on the S,W locations
in Fig. 2b and R locations in Fig. 2c Predictor generates
list of locations L(S,W,R) illustrated in Fig. 2d. Based on
KB and L(S,W,R) from Fig. 2d Evaluator determines the
benefits for B, i.e., Evaluator(L(S,W,R),KB) → B. In
addition, if the best benefits for the assignments are
determined exclusively by the shortest distances between
sensors/weapons and targets, then Evaluator determines
the best benefits that correspond to the edges in Fig.2d.

In this work we assume that Evaluator(L(S,W,R),KB)
generates the benefit values, which are the rational
numbers in B (recall Section 2). This assumption should
not diminish the practicality of SWAT.

6. OPTIMIZATION IN SWAT

The purpose of the optimizer is to take the given
weapons/sensors/targets along with a corresponding
benefit matrix describing the benefits of assigning
weapon/sensor pairs to targets, and to find an optimal
assignment (i.e., an assignment that maximizes the total
benefit of assigning weapon/sensor pairs to the targets).

6.1 Mathematical Formulation

Consider nn ×2 benefit matrix A, where each row

corresponds to a unique combination of sensor-weapon
pair, and each column corresponds to a unique target
(Fig. 3).

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

nnnn

n

n

aaa

aaa
aaa

A

,2,1,

,22,21,2

,12,11,1

222 ...
............
............

...

...

Fig.3 – Benefit matrix A

y

x

 w3 w2 w1

r3 r2 r1

s3 s2 s1

Instance t0

 (a)

y

x

 w1 w2 w3

r1 r3 r2

s3 s2 s1

Instance ti-β

 (b)

y

x

 w3 w2 w1

r2 r1 r3

s3 s2 s1

Instance ti

 (c)

y

x

 w1 w2 w3

r2 r1 r3

s3 s2 s1

L(S,W,R) for ti

 (d)

 4

In addition, each element ai,j in A is a nonnegative

rational number, which represents a benefit of assigning
row i to column j, and consequently a benefit of assigning
i’th sensor-weapon pair to j’th target. We can now arra-
nge our benefit matrix as follows. Let k

jiji ba ',',' = where
i’ = (i-1)n+j and j’ = k. Then we have

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

n
nnnnnn

n
nnn

n
nnn

n

n
nnn

n

bbb

bbb

bbb

bbb
bbb

bbb

B

,
2
,

1
,

1,
2

2,
1

1,

,2
2
,2

1
,2

1,2
2

1,2
1

1,2

,1
2
,1

1
,1

1,1
2
1,1

1
1,1

......
...............

......
...............
...............

......
................

......

......
................

......

Fig.4 – Benefit matrix B

with rational benefits

Let XBC ×= , where 2],[nnjixX ×= . If sensor i and

weapon j are assigned to target k then 1',' =jix , where

i’ = k and j’ = (i-1)n + j. Otherwise 0',' =jix . The prob-

lem is to find matrix X that maximizes Tr(C) and which
satisfies the following rules:

(1) Each sensor is assigned exactly once.
(2) Each weapon is assigned exactly once.
(3) Exactly one sensor is assigned to a target.
(4) Exactly one weapon is assigned to a target.

So, we can state the optimization problem as follows:

∑
=

2

1
,max

n

i
iic (5)

subject to:

1
1 1

, =∑∑
= =

n

i

n

j

k
jib (6)

1
1 1

, =∑∑
= =

n

i

n

k

k
jib (7)

1
1 1

, =∑∑
= =

n

j

n

k

k
jib (8)

6.2 Why Exact Algorithm

To solve an assignment optimization problem in

SWAT focused on sensors, weapons and targets, we might
first consider if it makes sense to use an exact
optimization algorithm vs. an approximate heuristic.
Since the number of sensors, weapons and targets in
realistic battlefield scenarios should run up to the
hundreds, we estimate that an exact optimization
algorithm should perform time-efficiently (i.e., in order of
tens of seconds). Hence, our attention should be focused
on finding an exact optimization algorithm for the
assignment problem for this range.

One of the better-documented exact optimization

algorithms for an assignment problem is the auction
algorithm (Bertsekas, 1990, 1992b; Castanon, 1993). For
the above input size an algorithm derived from the
auction algorithms should run in order of seconds, as it
has been shown in (Bogdanowicz and Coleman, 2007).
Furthermore, the bidding and assignment phases of such
derived algorithm are highly parallelizable (Bertsekas,
1992b), which makes it scalable. That is, the bidding and
the assignment can be carried out for all sensors, weapons
and targets simultaneously, which could extend the range
of input to thousands of sensors, weapons and targets and
beyond.

Finally, the nature of sensor-target and weapon-target

pairings should allow a benefit scaling, which could
produce matrix B with all integral benefits bij (Section
6.3). This in turn could further improve the performance
of auction-based algorithms. In fact, this is the key for an
efficient implementation of any auction algorithm.

For much larger input sizes one could also consider

variants of the interior point algorithm (Adler et al., 1989;
Todd, 1992). However, such inputs would be rather rare
for sensor/weapon-target pairing in the real world. In
addition, one could still address this class of problems
with the parallel implementation of an auction-based
algorithm.

6.3 Swt_opt Algorithm

 Assume that the weapons/sensors/targets are given
along with matrix X and the corresponding arranged

 5

benefit matrix B from Fig. 4. The benefits k
jib , in matrix

B are all nonnegative rational numbers, and elements xi,j
in matrix X are all equal zero.

In B each row corresponds to a unique sensor/weapon
combination and each column corresponds to a target.
That is, bij represents a benefit of assigning i’th distinct
sensor/weapon combination to target j. Such a translation
requires O(n3) operations. So B has n2 rows and n
columns, and represents the only input to our Swt_opt
algorithm, which executes predominantly as a standard
auction algorithm. It assigns n out of n2 rows to n columns
in B with the following exceptions.

a) If sensor si and weapon wj are currently assigned

to target rk, based on the best bid (i.e., siwj rk),
then si’wj’ rk’ is not considered for assignment
to target k’, k’ ≠ k if either i=i’ or j=j’. This
assures that a sensor/weapon or target is not
assigned more than once in an optimal solution.

b) Based on the best siwj rk assignment a second

best assignment for target k’, k’ ≠ k is determined
by si’wj’ rk’, where i’=i. This allows calculation
of a penalty cost for auction bids.

 Swt_opt algorithm for sensor/weapon-target pairings

can be presented in 12 steps as follows.

__

Step 1: Initialize ε < n
1 , m=1, v1 = … = vn = 0, and

w1 = … = wn = 0.

Step 2: Transform B; B B’ nnjib ×=]['

, , where '
, jib is

integer for n ≥ i ≥ 1, n ≥ j ≥ 1 . It follows by
B:= B’.

Step 3: If there exists unassigned sensor im, so

0
1'

)1(

1)1('
',' =∑ ∑

=

+−

+−=

n

i

nin

inj
ji

m

m

x then i = im.

 Otherwise, STOP.

 Step 4: Select j1, k1 such that

),min(
1

1

11
1

1 ,, j
k

jik
k

ji wbvb −− =

)),(min(max ,,, j
k

jik
k

jikj wbvb −− .

Step 5: Select j2, k2 such that

),min(
2

2

22
2

2 ,, j
k

jik
k

ji wbvb −− =

)),(min(max ,,, 11 j
k

jik
k

jikkjj wbvb −−≠≠ .

Step 6: Set),min(:
1

1

11
1

1 ,, j
k

jik
k

ji wbvb −−=ϕ -

),min(
2

2

22
2

2 ,, j
k

jik
k

ji wbvb −− .

Step 7: Update εϕ ++=),max(:
111 jkk wvv .

Step 8: Update

11
: kj vw = .

Step 9: If 1',' =jix for i’ = k1, j’≠ j1 (mod n) then

0:',' =jix .
Step 10: If 1',' =jix for i’ ≠ k1, j’≡ j1 (mod n) then

0:',' =jix .

Step 11: If 1',' =jix for i’ = k1, j’≡ j1 (mod n) then

0:',' =jix .

Step 12: Set 1:
11)1(, =+− jnikx , m := m+1 and return to

Step 3.
__

Steps 1-2 in Swt_opt represent initialization steps. A

minimum bidding increment parameter ε is set to ε<1/n
(for example ε can be set to 0.0099 if n = 100). This set-
up assures that any complete assignment generated by our
algorithm is optimal (Bogdanowicz et al., 2005). In Step 2
arranged benefit matrix B is scaled up by multiplying it by
scalar C, so every element b’i,j in the transformed matrix
B’ becomes an integer. This scaling is possible because
elements bi,j in B are the rational numbers. It is an
essential step for making Swt_opt time-efficient.

 In Swt_opt a single iteration is defined by Steps 3

through 12. In particular, i’th bid corresponds to a bid in
the auction algorithms and is executed in Swt_opt by
sensor i on one of n targets, and having n weapons to its
disposal. In Step 3 it is determined if there exists an
unassigned sensor in m’th iteration. If such a sensor im
exists then it is considered for assignment in iteration m.
Selection of such a sensor would depend on specific
implementation of Swt_opt. For example, a lowest
indexed unassigned sensor can be chosen. In Step 4 the
best triplet (i,j1,k1) (i.e., triplet identifying
sensor/weapon/target) for assignment is determined for
given sensor i = im. Similarly, in Step 5 the second best
triplet (i,j2,k2) for assignment is determined for given
sensor i. Then in Step 6 a penalty φ is calculated, which
expresses the difference between the best assignment and
the second best assignment of the current sensor i to a
target. This penalty is added in Steps 7, 8 to variables vk1,
wj1 associated with a target and weapon being assigned in
the current iteration. It follows by resetting the
assignment flags xi’,j’ in Steps 9 through 11 for the
weapons/targets being unassigned in the current iteration.
Finally, in Step 12 an assignment flag xk1,(i-1) n+j1 is set that

 6

corresponds to a sensor/weapon/target pairing being
assigned in the current iteration. The iterations in Swt_opt
continue as long as not all sensors are assigned.

Consider now the worst-case running time complexity

of accomplishing an optimal assignment. The assignment
problem can be modeled with a complete bipartite graph
G=(V,E), where the number of vertices |V(G)|=n2+n and
the number of edges |E(G)|=n3 in G. Let ai,j be a benefit
of assigning vertex vi to vertex vj if a corresponding edge
(i,j) exists in G. Let bmax=max(i,j)∈E(G)aij. Because B
consists of the rational numbers only then there exists an
integer that converts B to B’, where B’ consists of only
integers. Let C be the smallest such integer. Without loss
of generality consider B’ as an input to Swt_opt, which
means that integer Cbmax represents the largest benefit in
B’. The total number of iterations in which a target
receives a bid is no more than (Cbmax +ε)/ε. In addition,
each iteration of Swt_opt involves a bid by a pair of a
single sensor along with the best available (unassigned)
weapon. So, the total number of iterations is no more
than n times (Cbmax +ε)/ε, and since ε < 1/n and every bid
requires O(n2) operations, the worst running time of the
algorithm is

O(n4Cbmax). (9)

To illustrate the optimization scenario for Swt_opt

consider an arranged benefit matrix B from Fig. 4 for n=3
and with the following values:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

21613716761231631
57911737269313327
3711777356292925

TB .

Sensor-weapon pair siwj corresponds to column

3(i-1)+j, and target rk corresponds to row k in BT above,
where n ≥ i ≥ 1, n ≥ j≥ 1, n ≥ k ≥ 1. Note, scaling (i.e.,
Step 2 in Swt_opt) is not needed here. The sequence of the
assignments executed by Swt_opt based on this instance
of B is as follows:

Iteration 1: s1 w2→r2 ,
Iteration 2: s2 w3→r1 ,
Iteration 3: s3 w3→r2 ,
Iteration 4: s1 w1→r3 ,
Iteration 5: s2 w2→r1 .

In Swt_opt i’th iteration corresponds to columns

3(i-1)(mod 9)+1, 3(i-1)(mod 9)+2, and 3(i-1)(mod 9)+3
in BT. The final optimal assignment generated by Swt_opt
in this case can be represented by incomplete bipartite
graph in Fig. 5, where left bipartition (i.e., vertices siwj)
corresponds to rows and right bipartition (i.e., vertices rk)
corresponds to columns in B.

Fig. 5- Bipartite incomplete graph representing

sensor/weapon-target final assignment

7. SWAT ALGORITM

Based on Predictor, Evaluator and Swt_opt com-
ponents described in the previous sections, we can now
present the SWAT algorithm for the optimal assignment of
sensors/weapons to targets. The input to SWAT consists of
sensors S, weapons W, targets R, and a Knowledge Base
KB. We also assume that parameters tmin, T, and δ defined
in Section 4 are given, they satisfy (1-4), and they are
included in KB. In addition, as we discussed in previous
sections, |S| = |W| = |R| = n. Let L(S,W,R) be the list of
locations of sensors, weapons and targets at a time
corresponding to an intended hypothetical engagement.
SWAT can be executed in 7 steps as follows.

Step 1: Initialize Copt := 0, t := tmin and

X := Xopt := 0.

Step 2: If t ≤ T then execute Steps 3 through 7.

Otherwise, Report(topt,Xopt,KB) and STOP.

Step 3: L(S,W,R) := Predictor(S,W,R,KB,t).

Step 4: B := Evaluator(L(S,W,R),KB).

Step 5: X := Swt_opt(B,X).

Step 6: If opt

n

i
ii Cc >∑

=

2

1
,max then

ttopt =: , ∑
=

==
2

1
,max:;:

n

i
iioptopt cCXX .

Step 7: Set t := t+ δ, X := 0 and return to Step 2.
__

s1w3

s1w1

 r1

s2w1

 r2

 r3

s1w2

s2w2

s2w3

s3w1

s3w2

s3w3

 7

SWAT starts with initialization in Step 1. The main
iterations are defined by Steps 2 through 7, where Step 2
assures that there are at most T/δ such iterations. In Step 3
Predictor generates a list of locations for S, W, T; i.e.,
Predictor(S,W,R,KB,t)→ L(S,W,R). In Step 4 Evaluator
takes L(S,W,R), and based on sensors/weapons/targets
parameters from KB it establishes matrix B = nnjib ×2][,

(Evaluator(L(S,W,R),KB)→ B) with all rational elements
jib , . In Step 5 Swt_opt algorithm first scales up B→ B’,

so every element b’i,j in the transformed matrix B’
becomes an integer. Then Swt_opt algorithm reassigns
B:=B’ and optimizes sensor/weapon-target pairings, i.e.,
Swt_opt(B,X) → X. Step 6 tests if the sensor/weapon-
target pairings found in the current iteration are optimal.
If they are optimal then the engagement time t and
optimal assignment X are saved ; i.e., t→ topt, X→ Xopt. In
Step 7 an engagement time t is updated and
sensor/weapon-target pairings X is reset. SWAT
terminates in Step 2 if t > T. In this case, a postprocessor
Report(topt,Xopt,KB) takes saved engagement time topt
along with the optimal sensor/weapon-target pairs found
Xopt and generates an appropriate report based on KB.

In SWAT we can assume that Step 5 dominates Step 3
(i.e., Swt_opt(B,X) dominates Predictor(S,W,R,KB,t)) if
the time horizon T is within a certain limit; when it’s not
too large. Otherwise, the prediction process becomes
more computationally expensive and Predictor might
dominate Swt_opt. Consider the worst-case running time
complexity of SWAT when Swt_opt dominates Predictor.
Evaluator in Step 4 evaluates n2 x n elements of B with a
fixed amount of time per element. So, Evaluator in SWAT
requires O(n3) operations. On the other hand, based on (9)
derived in Section 6, Swt_opt requires O(n4Cbmax) in the
worst case, where integer Cbmax represents the largest
benefit in B obtained after scaling. So, each iteration in
SWAT requires at most O(n4Cbmax). Based on relations (1-
4) there are at most T/δ iterations defined by Step 2 in
SWAT. Hence, if Swt_opt dominates Predictor the worst
execution time of SWAT is

 O(n4Cbmax T/δ). (10)

CONCLUSIONS

In this paper we introduced the novel algorithm named
SWAT for optimized pairing of sensor-weapon pairs with
targets at proposed time t ≤ T, where T represents the
planning time horizon. SWAT can significantly enhance
the effectiveness and lethality of collaborative
engagement of multiple targets in modern battlefields.
Our algorithm consists of three main components -
Predictor, Evaluator, and Optimizer - that were described
in Sections 4-6. In this work we focused most attention on
Optimizer (i.e., exact Swt_opt algorithm) that we

described in Section 6.3. More research is anticipated
(and needed) on the design and implementation of
Predictor and Evaluator, which by their own right are the
challenging problems. In particular, Evaluator requires
establishing the benefits for every sensor/weapon-target
combination. The difficulty here lies in establishing
correct/realistic relative values of such benefits. One
possible source for establishing such benefits might be
Joint Munitions Effectiveness Manual (JMEM), but this
covers only weapon-target pairings. Another possibility
would be to employ a human domain expert who would
manually enter benefits for sensor/weapon-target
combinations to the specialized KB system.

For limited time horizon T, which has to be

empirically determined for given scenario(s), the time
complexity of Swt_opt dominates the time complexities of
Predictor and Evaluator. So, the expected running time
for SWAT in such a case is O(n4Cbmax T/δ).

Computational results for independent sensor/weapon-

target pairings (Bogdanowicz and Coleman, 2007) based
on the modified algorithm implemented in O(n3Cbmax)
indicate that for n ≤ 120 such an algorithm requires, on
the average, a few seconds to execute. This in turn
suggests that Swt_opt introduced in this work should
perform well (i.e., order of seconds) for inputs defined by
n ≤ 100. So, for the small unit (e.g., squad or platoon)
network lethality and collaborative engagement, Swt_opt
(and hence SWAT) should perform efficiently. This
performance of Swt_opt, however, needs to be studied and
verified. For n much greater than 100 (e.g., support for
collaborative engagement on brigade level) either a good
heuristic approach or the distributed implementation of
Swt_opt algorithm could be a critical factor to yield high
performance. In particular, implementation of Swt_opt for
parallel computing seems to be well suited here.

REFERENCES

Adler I., Karmarkar N., Resende M., Veiga G., 1989: An

Implementation of Karmarkar Algorithm for Linear
Programming, Math. Programming 44, 297-335.

Bertsekas D., 1992a: Linear Network Optimization:
Algorithms and Codes, The MIT Press.

Bertsekas D., 1992b: Auction Algorithms for Network
Flow Problems: A Tutorial Introduction, Comp.
Optimiz. and Appl. 1, 7-66.

Bertsekas D., 1990: The Auction Algorithm for
 Assignment and Other Network Flow Problems,

Interfaces 20, 133-149.
Bogdanowicz Z. and P. Coleman N., 2007: Optimization

of Sensor/Weapon-Target Pairings Based on
Auction Algorithm, WSEAS Transactions on
Mathematics, 6, 730-735.

 8

Bogdanowicz Z., Coleman N., and Kaniyantethu S., 2005:
Combat Decision Support Subsystem for Optimal
Weapon-Target Assignment, DCDIS Proceedings,
Watam Press, 11-15.

Bogdanowicz Z. and Coleman N., 2004a: Auction
Algorithm for Weapons/Targets Pairing Application,
24th ASC Proceedings, CS-03, Orlando, Florida.

Bogdanowicz Z. and Coleman N., 2004b: Efficient
methodology and robust infrastructure for assigning
weapons to targets, AMCS Proceedings, CSREA
Press, 289-295.

Castanon D., 1993: Reverse Auction Algorithms for
Assignment Problems, Algorithms for Network
Flows and Matching – American Math. Society 407-
429.

Galil Z., 1986: Efficient Algorithms for Finding
Maximum Matchings in Graphs. ACM Computing
Surveys, 18, 23-38.

Karmarkar N., 1984: A New Polynomial-time Algorithm
for Linear Programming, Combinat. 4, 373-395.

Lovász L. and Plummer M., 1986: Matching Theory.
North-Holland, Amsterdam

Micali S. and Vazirani V., 1980: An O(|||| eV) algo-
rithm for finding maximum matching in general
graphs, Proc. 21st Symp. Foundations of Computing,
17-27.

 Todd M., 1992: A Low Complexity Interior Point
Algorithm for Linear Programming, SIAM Journal
of Optimization 2, 198-209.

